














Figure 5 Rate of voluntary movements controlled by three individuals with motor complete spinal cord injury. (A) Force and extensor

hallucis longus (EHL) EMG activity during fast voluntary first toe flexion/extension against a compliant resistance from Patient B07 from a

single attempt. (B) A 1-s sweep from A before initiation of force generation encompassed by the first dashed vertical box. Ten 10 ms traces

of EHL are overlaid every 0.1 s (bottom panel). The red crosses represent the timing of the stimulation artefact. (C) A 1-s period (A) during

one cycle of force generation encompassed by the second dashed vertical box. Traces of EHL are shown as an overlay of 31 responses

marked relative to the stimulation stimulus (bottom panel). (D and F) Force (black line) and iliopsoas and vastus lateralis EMG activity
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�0.4 Hz for Patient A45 and 0.85 Hz for Patient A53 when oscil-

lating the whole leg (Fig. 5D–G, Supplementary Video 4). Clonic

activity (6.5 Hz) of the extensor hallicus longus was not linked to

the stimulation frequency (30 Hz) and occurred throughout the

test in Patient B07 (Fig. 5B). EMG responses were initiated just

before there was a rise in force (Fig. 5C). There was no periodic

bursting of EMG activity within the timeframe of a single force

effort (Fig. 5C). As noted earlier Patients A45 and A53 had reci-

procity in the modulation of the EMG of the iliopsoas and the

vastus lateralis during leg flexion and extension (Fig. 5D–G). In

Fig. 5D, one of the oscillatory cycles has been marked in red

and green, which denote the modulation of the amplitude of

the EMG of the iliopsoas and vastus lateralis. Figure 5E shows

the relative modulation of the hip flexor and knee extensor, and

also highlights the one oscillation with flexion in red and extension

in green (Patient A45). Patient A53 showed a similar modulation

of the iliopsoas and vastus lateralis during multiple oscillatory

cycles of leg flexion (Fig. 5F–G). After home-based training

Patient B07 was able to generate similar reciprocal activation of

flexors and extensors between the iliopsoas and vastus lateralis,

but only during single attempts. Patient B13 was not able to gen-

erate different levels of force, oscillations or sustain the contrac-

tions upon request at his initial testing. His level of clonus and

spasticity throughout the day was markedly higher than the

other individuals.

Visual and auditory processing
We also assessed whether volitional control could modulate the

level of activation of the appropriate motor pools based on visual

and/or auditory input. All individuals could modulate the motor

tasks according to visual and auditory cues. The individuals were

asked to synchronize the flexion of the leg, dorsiflexion of the

ankle and extension of the toe according to the rise and fall of

a sine wave displayed on a computer screen. The individuals were

able to consistently activate the appropriate muscles for the spe-

cified action with temporally synchronized force generation (data

not shown). We compared the ability of the four individuals to

modulate the flexion of the leg to a visual cue during optimal

stimulation to three volume levels (60, 70 and 80 dB) of a similar

auditory cue (Fig. 6). Individuals were asked to generate leg flex-

ion in response to the onset of a 0.25 Hz auditory signal with the

level of force to be generated to correspond to the amplitude of

the tone. Data shown in Fig. 6 are for the following time points,

T3: Patients B07 and A45; T2: Patient B13; and T1: Patient A53

(Supplementary Table 1 and Fig. 2). Three of four individuals were

able to discriminate between sound amplitudes, although the

differentiation between low and medium forces was not consistent

in Patients B13 and B07. For Patients A45 and B07, EMG ampli-

tude of the iliopsoas and the adductor for the high volume was

comparable with the EMG amplitudes generated when the force

was modulated by a visual cue using the same stimulation param-

eters. The results demonstrate that auditory and visual cues

were processed by the sensorimotor cortex so that the appropriate

spinal interneuronal systems below the level of injury enabling the

subject to titrate the desired level of excitability of the correct

motor pools for the intended movement.

Effects of repetitive training on
voluntary performance
Daily training using epidural stimulation with stand training and

home-based voluntary training with epidural stimulation resulted

in the generation of voluntary efforts with higher forces and lower

stimulation voltages to reach the thresholds that enabled voluntary

motor responses in two individuals (Patients B07 and B13). After

28 weeks of home-based stand and voluntary training with epi-

dural stimulation in Patient B07, the stimulation threshold for force

generation was lower. The threshold intensity was further reduced

after an additional 12 weeks of training (Fig. 7A). Similar results

were observed in both legs and during toe extension for Patient

B07 (data not shown). Following stand training and home-based

voluntary training (Fig. 2), Patient B13 showed a similar trend of

lower threshold for force generation even achieving movement

with no stimulation. With continued home-based voluntary train-

ing and at the conclusion of step training, Patient B13 maintained

the ability to perform leg flexion with no stimulation. The peak

force to stimulation strength relationship for Patient B13 post step

training was characteristic of a parabolic function. Stimulation

amplitudes between 0.5 V and 1.5 V resulted in force values

lower than those obtained when moving with no stimulation.

From 1.5 V to 2.5 V, force increased linearly with increased inten-

sity. In the case of Patient A45, although a force increase was not

observed at lower stimulation voltages following training, im-

provements in the accuracy to match the oscilloscope signal

were observed (Fig. 7B).

Figure 7B compares the ability of all subjects to match force

generation during leg flexion to a visual cue at T1 (top panel),

T2 (middle panel) and T3 (bottom panel). Patient A45 showed the

greatest accuracy improvement matching the force generation to

the visual cue (Fig. 7B). This accuracy was demonstrated both

while responding to a visual cue, as well as to an auditory cue.

Patient A53 is currently undergoing step training, therefore T3

data have not been collected. These results demonstrate the ability

Figure 5 Continued
during fast voluntary whole leg flexion/extension against a compliant resistance from Patients A45 and A53, respectively. The linear

envelope of the EMG signals (purple line, filter: second-order Butterworth 500–100 Hz) is shown over the raw signal. (E and G) Plot of

linear envelope of the vastus lateralis versus iliopsoas from D and F. Red over the linear envelopes represents the flexion phase while green

represents the extension phase of one cycle of the movement. Electrode representation for each subject denotes the stimulation con-

figuration used. Grey boxes are cathodes and black boxes are anodes, white boxes are inactive electrodes. Stimulation frequency varied

from 25 to 30Hz. Muscles, surface EMG: vastus lateralis (VL); *fine wire EMG: iliopsoas (IL), extensor hallucis longus (EHL). Stimulation

artefact recorded over paraspinal muscles at T12 [epidural stimulation (ES) = blue trace].
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of the spinal networks to learn with task-specific training and im-

prove motor pool recruitment to promote force generation and

accuracy. Another representation of the volitional contributions

in a more task-specific activity was demonstrated by Patients

A45 and A53 while stepping on the treadmill with body weight

support and manual assistance, in the presence of epidural stimu-

lation (Fig. 8). During stepping, Patient A45 was able to modulate

the amount and pattern of EMG activity of lower extremity mus-

cles when consciously thinking about stepping and moving the

legs through the step cycle (Fig. 8A). Amplitude and burst dur-

ation of the flexors and extensors (bilaterally) were increased, ex-

tensors of the left knee and bilateral ankles were also modulated

by the intent. Linear envelope plots of flexors and extensors show

a general increase in amplitude although the coordination was not

changed (Fig. 8B). Similarly, Patient A53 was able to modulate the

amplitude of EMG of flexors and extensors during the step cycle

(Fig. 8C). Both participants were able to have a greater modula-

tion of the flexor groups as compared to the extensors. This is

consistent with their voluntary activity practice as all participants

regained the ability to perform flexion tasks with a greater diffi-

culty performing active extension. This ability to modulate EMG

with intent during stepping was only seen in two of three individ-

uals. Because of the fact that this observation was performed after

the completion of all laboratory training for Patient B07, we never

tested his ability to modulate motor output during stepping.

Patient B13 was not able to show this ability during stepping;

Figure 6 Voluntary movement with epidural stimulation performed in response to visual and auditory cues in four individuals with motor

complete spinal cord injury. Averaged linear envelopes (filter: Winter Butterworth low-pass 2 Hz) of EMG activity and force (FORCE)

generated from three trials. The left panel of each participant represents whole leg flexion/extension in response to a visual cue during

optimal stimulation. Black line represents the mean signal and grey line indicates 1 SD (standard deviation) about the mean. The red line

represents the oscilloscope signal which served as the visual cue. The right panel of each participant represents whole leg flexion in

response three different volumes of an auditory cue during optimal stimulation. Black line represents the mean signal and grey line

indicates one standard deviation about the mean. The red line represents the oscilloscope signal that matched the auditory volume cue.

Stimulation parameters and voltages for the visual and auditory attempts were the same for each subject. Electrode representation for

each subject denotes the stimulation configuration used. Grey boxes are cathodes and black boxes are anodes, white boxes are inactive

electrodes. Stimulation frequency varied from 25 to 30 Hz. Muscles, surface EMG:intercostal sixth rib (IC), adductor magnus (AD); fine

wire EMG: iliopsoas (IL).
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this might be the result of the higher sensitivity to stimulation and

greater difficulty in performing multiple repetitions of volitional

activity.

Discussion
This study demonstrates the ability of four individuals with chronic

complete motor paralysis to execute voluntary tasks with selectiv-

ity of appropriate motor pools in the presence of epidural stimu-

lation. High fidelity sensorimotor translation of visual and auditory

signals were processed to control the timing and amount of force

generated during the movements. In three of four individuals, we

observed the recovery of voluntary movement with epidural

stimulation soon after implantation, two of whom had complete

loss of both motor and sensory function (Supplementary Videos

1–3). This shows that by neuromodulating the spinal circuitry at

sub-threshold motor levels with epidural stimulation, chronically

complete paralysed individuals can process conceptual, auditory,

and visual input to regain specific voluntary control of paralysed

muscles. We have uncovered a fundamentally new intervention

strategy that can dramatically affect recovery of voluntary move-

ment in individuals with complete paralysis even years after injury.

The results in the three individuals who were tested after im-

plantation, but before repetitive training, suggests that descending

connections to the spinal cord circuitry may have existed since the

time of injury. Patient B07 did not show voluntary ability until

after 7 months of epidural stimulation and stand training, from

an attempt he initiated. The initial study protocol did not include

attempted voluntary movements so we cannot verify whether

movement was possible before training. However, Patients A45,

B13 and A53 were able to voluntarily execute movements after

11, 4 and 7 days of epidural stimulation, respectively

(Supplementary Table 1). Anatomical connections may have per-

sisted after the injury that were previously ‘silent’ because of loss

of conduction as a result of disruption of myelin or the ionic chan-

nels of the neurons (Waxman, 1989; Fehlings and Nashmi, 1996;

Shi and Blight, 1997; Sinha et al., 2006; Coggan et al., 2011). In

our study, these individuals initially were able to elicit these inten-

tional movements only with the epidural stimulation indicating

that the limited influence of the available supraspinal connections

was not sufficient to activate motor pools. As demonstrated in Fig.

1B and D, transcranial magnetic stimulation did not show any

changes in excitation even when the individuals were requested

to attempt to actively dorsiflex the ankle at the time the transcra-

nial magnetic stimulation pulse was delivered. This suggests that

the alteration of the spinal cord circuitry with epidural stimulation

was enhancing the central excitatory drive to the motor neurons.

Conceivable through activated lumbosacral interneurons, since

before the intent of the movement the motor pools were not

active (Angel et al., 1996, 2005; Djouhri and Jankowska, 1998;

Edgley et al., 2004; Cabaj et al., 2006; Bannatyne et al., 2009).

The somatosensory evoked potentials results in the two AIS-B in-

dividuals showing a shorter latency of responses after training may

suggest improved somatosensory transmission promoted by repeti-

tive epidural stimulation.

The resting general excitability state of the spinal circuitry was

different among the four individuals that participated in this study

(Supplementary Fig. 2). There were differences in stimulation in-

tensity thresholds seen across individuals for the generation of

movement (Fig. 7). Patients B07 and A45 required higher levels

of stimulation to initiate movement and had relatively low levels of

clonus and spasticity throughout the day. In contrast, Patients B13

and A53, the more spontaneously active individuals who reported

more clonus and spasticity, could initiate movement at lower

thresholds of stimulation. We propose that the functional state

of spinal network excitability of interneurons (Bannatyne et al.,

2009) and motor neurons was modulated by the epidural stimu-

lation, presumably driving them closer to their appropriate activa-

tion threshold, enabling intentional movement (Quevedo et al.,

2005; Berg et al., 2007; Yarom and Hounsgaard, 2011). Thus,

loss of voluntary control of movement may be attributed to not

only a physical disruption of descending connections, but also to a

physiological alteration of the central state of excitability of the

spinal circuitry (Edgerton et al., 1997; de Leon et al., 1999;

Tillakaratne et al., 2002). These findings have important implica-

tions regarding the significance of sub-motor threshold modulation

of spinal circuitry as an important factor in motor control in the

uninjured as well as injured spinal cord.

The recovery of the volitional motor drive in four individuals

diagnosed with complete motor paralysis (Fig. 3) could have

been facilitated by lumbosacral spinal cord epidural stimulation

through transmission of rostro-caudal signal propagation through

the propriospinal interneuronal projections (Zaporozhets et al.,

2006, 2011; Courtine et al., 2008; Cowley et al., 2008; Flynn

et al., 2011). We assessed the individuals’ ability to execute a

movement on command by comparing the EMG and force pat-

terns with a sine wave pattern on a computer screen (Fig. 7B). In

general, at the first time point tested, all individuals demonstrated

a delay in the initiation of the force relative to the rise of the sine

wave and the force decline was earlier than the decline of the

position cursor. Regardless of these time differences in initiation

and termination of the effort, the patients could clearly execute

the movements on command. The delay in the motor response

related to the intention to move observed in each individual could

be consistent with the voluntarily controlled motor commands

being mediated more indirectly through descending propriospinal

pathways. Although we cannot rule out a delay of processing the

auditory and visual cues, there is precedence in the rat model that

tonic intraspinal stimulation immediately caudal to the injury re-

sulted in functional improvements comparable with those seen

following long-distance axon regeneration (Yakovenko et al.,

2007). Cowley et al. (2010) showed that even in the absence of

long direct transmission, propriospinal pathways through commis-

sural projections can transmit a locomotor command to the lum-

brosacral spinal cord with 27% success. Thus, the stimulation may

facilitate excitation of propriospinal neurons which supports propa-

gation of the voluntary command to the lumbosacral spinal cord.

It is also possible that reticulospinal neurons may mediate ipsi-

lateral corticospinal tract relay through commissural interneurons.

Studies have shown that commissural interneurons activated by

reticulospinal neurons have direct contacts with interneurons med-

iating reflex actions from Group Ib tendon organ afferents and
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Group II muscle spindle afferents and modulate actions of

these interneurons. (Edgley et al., 2004; Cabaj et al., 2006).The

strengthening of reticulospinal connections to motor neurons was

demonstrated in monkeys following a unilateral corticospinal tract

lesion (Zaaimi et al., 2012). Future studies are needed to probe

pathways including propriospinal, corticospinal, reticulospinal and

vestibulospinal, that have residual connectivity and can support

the propagation of signals.

In all four research participants, their ability to voluntarily move

improved over time with daily epidural stimulation and voluntary

training while also receiving stand or step training. Figure 7 shows

the effect of training on the ability to generate higher forces with

similar stimulation intensities as well as the ability to more accurately

match a visual cue. These results demonstrate the ability of the

spinal networks to learn with task-specific training and improve

motor pool recruitment to promote force generation and accuracy.

Conceivably, after repetitive epidural stimulation and training, plas-

ticity of these disrupted pathways could have resulted in a more

functional state. The newly established functional connectivity pre-

sumably involves multiple, novel neuronal pathways and synapses

(Raineteau et al., 2002). Exercise training after spinal cord injury in a

rodent model has been shown to enhance corticospinal tract sprout-

ing and increased functional connections to spinal neurons (Bareyre

et al., 2004; Engesser-Cesar et al., 2007; Courtine et al., 2008;

Goldshmit et al., 2008; Flynn et al., 2013). Similarly it is conceivable

that sprouting or growth of axons across the lesion occurred in

response to repetitive epidural stimulation and/or stand training.

Axonal sprouting is unlikely as the mechanism for early execution

of the voluntary movement in three of four individuals studied here.

This study demonstrates that individuals diagnosed as clinically

motor complete can develop functional connectivity across the

lesion in the presence of epidural stimulation. This emphasizes

the importance of resolving the uncertainty associated with clas-

sifying a patient as clinically complete and then determining that

no recovery is possible (Waters et al., 1998; Ditunno, Jr, 1999;

Burns et al., 2003; Calancie et al., 2004a; Kakulas, 2004).

Although the exact mechanisms that enabled these surprising

results cannot be definitively identified, the possibility of re-

establishing functionally meaningful voluntary control in the

presence of epidural stimulation places a high priority on recon-

sideration of the mechanisms contributing to paralysis in humans.

These results indicate that epidural stimulation with activity-

dependent plasticity can be used to develop effective therapeutic

interventions for recovery of movement in individuals with chronic

complete motor paralysis.

The acquired ability to have fine motor control and fidelity of

movement in the presence of epidural stimulation currently has

limitations when attempting to translate functional benefit to

daily life. The lack of a usable interactive patient interface with

embedded control algorithms makes the movements as used

before injury limited. However, all four of these individuals have

found unique ways to incorporate their ability to move their trunk

and legs into daily activities. For example, they use their trunk and

leg epidural stimulation configurations during physical workouts

and facets of their daily life allowing them to be more stable,

pursue activities for longer periods of time and they report greater

strength and less fatigue. We are following these reported

activities to guide the design of the control algorithms and patient

interfaces. Future experiments with improved technology are

needed expediently to take the most advantage functionally of

these neurophysiological findings in people after severe spinal

cord injury.
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