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Once their safety is confirmed, human-induced pluripotent stem
cells (hiPSCs), which do not entail ethical concerns, may become
a preferred cell source for regenerative medicine. Here, we in-
vestigated the therapeutic potential of transplanting hiPSC-de-
rived neurospheres (hiPSC-NSs) into nonobese diabetic (NOD)-
severe combined immunodeficient (SCID) mice to treat spinal cord
injury (SCI). For this, we used a hiPSC clone (201B7), established by
transducing four reprogramming factors (Oct3/4, Sox2, Klf4, and c-
Myc) into adult human fibroblasts. Grafted hiPSC-NSs survived,
migrated, and differentiated into the three major neural lineages
(neurons, astrocytes, and oligodendrocytes) within the injured
spinal cord. They showed both cell-autonomous and noncell-
autonomous (trophic) effects, including synapse formation be-
tween hiPSC-NS–derived neurons and host mouse neurons, ex-
pression of neurotrophic factors, angiogenesis, axonal regrowth,
and increased amounts of myelin in the injured area. These posi-
tive effects resulted in significantly better functional recovery
compared with vehicle-treated control animals, and the recovery
persisted through the end of the observation period, 112 d post-
SCI. No tumor formation was observed in the hiPSC-NS–grafted
mice. These findings suggest that hiPSCs give rise to neural
stem/progenitor cells that support improved function post-SCI
and are a promising cell source for its treatment.
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Stem-cell–based approaches, such as the transplantation of
neural stem/progenitor cells (NS/PCs), are promising sources

of therapies for various central nervous system disorders (1–3).
Previous studies reported functional recovery after trans-
plantation of NS/PCs into the injured spinal cord of rodents and
nonhuman primates (4–9). Furthermore, recent studies revealed
that embryonic stem cells (ESCs) can generate neural cells in-
cluding NS/PCs (10–12) and oligodendrocyte precursor cells
(OPCs) (13, 14). Therefore, human ESC-based therapies are
moving out of the laboratory and into clinical treatments for
spinal cord injury (SCI) (12, 13, 15). However, the use of human
ESC-based therapies is complicated by ethical concerns in cer-
tain countries. To avoid the problems associated with ESCs, we
previously established induced pluripotent stem cells (iPSCs)
from mouse fibroblasts (16, 17) and confirmed the therapeutic
potential of iPSC-derived neurospheres (iPSC-NSs) for treating
SCI in animal models (18).
Here, aiming at human iPSC-based therapies for SCI patients,

we examined the therapeutic potential of human iPSC-NSs by
transplanting them into nonobese diabetic severe combined im-
munodeficient (NOD-SCID) SCI model mice. We used a clone
from human iPSCs (hiPSCs) that we established from adult
human dermal fibroblasts by the retroviral transduction of four
reprogramming factors; for the clone used in this study, 201B7,

the factors were Oct3/4, Sox2, Klf4, and c-Myc (19). These
grafted hiPSC-NSs survived, migrated, and differentiated into
the three neural lineages in the injured spinal cord. They pro-
moted angiogenesis and axonal regrowth and preserved myeli-
nation, and some formed synapses with host mouse neurons.
These positive effects promoted functional recovery that per-
sisted for up to 112 d after SCI, without tumor formation.
These findings indicated that neurospheres derived from

hiPSCs are a potential cell source for transplantation therapy
for SCI.

Results
Grafted hiPSC-NSs Survived, Migrated, and Differentiated into Three
Neural Lineages. Contusive SCI was induced at the Th10 level in
NOD-SCID mice, and 5 × 105 Venus+ hiPSC-NSs or PBS was
injected into the lesion epicenter, 9 d after injury. To examine
the effects of grafted hiPSC-NSs in the injured spinal cord, his-
tological analyses were performed 56 d after SCI [after func-
tional recovery, based on the Basso mouse scale (BMS) score,
was observed to plateau]. Ten mice in each group were killed on
day 56, and 18 mice grafted with hiPSC-NSs and 16 PBS-injected
mice remained. These mice were assessed by BMS and for long-
term safety of the grafted hiPSC-NSs, 112 d after SCI (Table S1).
On day 56, the grafted hiPSC-NSs had survived and migrated

into the host spinal cord (Fig. 1 A and B). To examine their
differentiation potentials, we performed immunohistochemical
analyses and quantified the proportion of Venus+ cells immu-
nopositive for cell-type–specific markers. The engrafted hiPSC-
NSs differentiated into neuronal nuclei (NeuN)+ and β-tubulin
isotype III (βIII tubulin)+ neurons, glial fibrillary acidic protein
(GFAP)+ astrocytes, and adenomatous polyposis coli CC-1
(APC)+ oligodendrocytes (Fig. 1 C–F). The βIII tubulin+/Ve-
nus+ neurons comprised 49.1 ± 2.0% of the Venus+ cells, and
the mature NeuN+/Venus+ neurons comprised 22.9 ± 1.0%.
Thus, 56 d after SCI, about 50% of the grafted hiPSC-NSs had
differentiated into neurons, about half of which were mature
neurons. GFAP+/Venus+ astrocytes comprised 17.0 ± 1.2%, but
APC+/Venus+ oligodendrocytes were rare (3.0 ± 0.4%). Nes-
tin+/Venus+ NS/PCs made up 10.7 ± 2.2% of the total (Fig. 1G).
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Because 22.9% of the hiPSC-NSs differentiated into mature
neurons, we next examined their neurotransmitter phenotype,
using neurotransmitter-specific markers. Of the Venus+ cells,
15.8 ± 2% were glutamic acid decarboxylase 67 (GAD67)+, in-
dicating that 69% (15.8/22.9% = 69.0%) of the hiPSC-NS–
derived mature neurons were GABAergic (Fig. 1H). We also
found small numbers of Venus+ tyrosine hydroxylase (TH)+

neurons and choline acetyltransferase (ChAT)+ cholinergic neu-
rons (Fig. S1 A and B).

Synapse Formation Between hiPSC-Derived Neurons and Host Mouse
Neurons. To evaluate the ability of the hiPSC-NS–derived
neurons to integrate with the host neural circuitry, triple im-
munostaining was performed with antibodies to human nuclear
protein (HNu), βIII tubulin, and the presynaptic protein Bassoon
(Bsn). The anti-Bsn antibody is a monoclonal that selectively
recognizes mouse and rat, but not human epitopes. Grafted βIII
tubulin+/HNu+ cells in the neural parenchyma were observed
in contact with the synaptic boutons of host neurons (Fig. 2A).
In addition, triple immunostaining for HNu, βIII tubulin, and
human-specific synaptophysin (hSyn) revealed dense fields of

boutons apposed to βIII tubulin+/HNu− host mouse neurons
(Fig. 2B). These host neurons in the ventral gray matter were
ChAT+, and some of the boutons represented graft-specific
terminals (Fig. 2C). Immunoelectron microscopy revealed Ve-
nus+ (i.e., human) presynaptic and postsynaptic structures and
synapses between host mouse neurons and Venus+ hiPSC-de-
rived neurons at the injured site (Fig. 2D).

Transplantation of hiPSC-NSs Enhanced Angiogenesis and Axonal
Regrowth but Did Not Induce Abnormal Innervation of Pain-Related
CGRP+ Afferents After SCI. To evaluate the effects of hiPSC-NS
transplantation on angiogenesis after SCI, immunohistochemi-
cal analyses for platelet endothelial cell adhesion molecule-1
(PECAM-1) were performed. There were significantly more
PECAM-1+ blood vessels at the lesion epicenter in the hiPSC-
NS group than in the control group (Fig. 3 A–C). To determine
the source of the angiogenic signals, we examined the vascular
endothelial growth factor (VEGF) expression in the grafted
spinal cord by immunohistochemistry (Fig. 3D). Quantitative
analyses revealed that the VEGF+ area at the lesion epicenter
was significantly larger in the hiPSC-NS group than in the control
group (Fig. 3E). Furthermore, both GFAP+/Venus+ hiPSC-de-
rived astrocytes (Fig. 3F) and GFAP+/Venus− host mouse
astrocytes expressed VEGF (Fig. 3G), consistent with the results
of RT-PCR (Fig. 3 H and I). Note that the mouse Vegf mRNA
expression level was higher in the hiPSC-NS–grafted mice than
in PBS-injected mice.
Because angiogenesis generally improves tissue sparing, we

examined the atrophic changes of the injured spinal cord by
hematoxylin–eosin (H&E) staining. Unlike the hiPSC-NS group,
atrophic changes of the injured spinal cord were prominent in
the control group (Fig. 3 J and K). Quantitative analysis revealed
significant differences in the transverse area of the spinal cord
between the control and hiPSC-NS group, suggesting that the
hiPSC-NS transplantation prevented atrophy of the injured spi-
nal cord (Fig. 3L). Luxol fast blue (LFB) staining also revealed
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Fig. 1. In vivo differentiation of hiPSC-NSs. (A and B) Venus+ hiPSC-NSs were
integrated at or near the lesion epicenter (arrowheads). (Scale bars, 1000 μm
in A; 100 μm in B.) (C–F) Representative images of Venus+-grafted cells la-
beled with the neural markers NeuN+ (mature neurons) (C); βIII tubulin+ (all
neurons) (D); GFAP+ astrocytes (E); and APC+ oligodendrocytes (F). (Scale bar,
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Venus+-grafted cells 56 d after SCI. Values are means ± SEM (n = 4). (H) Most
hiPSC-derived neurons differentiated into GAD67+ (GABAergic) neurons.
(Scale bars, 50 μm in H-1; 20 μm in H-2; and 10 μm in H-3.)
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rived nerve cells on host motor neurons at the ventral horns. (D) Electron
microscopy showing synapse formation between host mouse neurons and
graft-derived Venus+ (black) human neurons: the pre- and postsynaptic
structures indicated transmission from a host neuron to a graft-derived
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a greater preservation of myelinated areas in the hiPSC-NS
group compared with the control group (Fig. 3 M–O).
To evaluate the effects of hiPSC-NS transplantation on axonal

regrowth after SCI, we examined the expression of neurofila-
ment 200 kDa (NF-H), 5-hydroxytrytamine (5HT), and growth-
associated protein 43 (GAP43) in the injured spinal cord by
immunohistochemistry. There were significantly more NF-H+

neuronal fibers in the hiPSC-NS group than in the control group
(Fig. 4 A and B). 5HT+

fibers, descending serotonergic raphes-
pinal tract axons that are important for the motor functional
recovery of hind limbs (20–22), were observed at the lumbar
intumescence in all mice (Fig. 4C). Contusive SCI resulted in
a significant decrease in the number of 5HT+

fibers. Relative to
mice at 7 d after SCI (2 d before the transplantation), by 56
d after SCI a slight but significant increase in the 5HT+

fiber area
was seen in the control group, and the hiPSC-NS group showed
an even greater enhancement (Fig. 4 C and D).
GAP43+ axons, which are regrowing (23), were detected in the

distal cords of all mice, but in the hiPSC-NS group, there were
significantly more GAP43+ fibers in the ventral region 1 mm
caudal to the lesion epicenter (Fig. 4 E and F), suggesting that
the hiPSC-NS transplantation promoted axonal regrowth in the
injured spinal cord. We also observed hiPSC-NS–derived astro-
cytes closely associated with NF-H+

fibers and 5HT+
fibers (Fig.

4 G and H). Moreover, RT-PCR revealed the expression of
neurotrophic factors (NGF, BDNF, and hepatocyte growth fac-
tor, HGF), which are associated with the axonal growth and
survival of existing neurons, by both the grafted human cells and
the host mouse tissues (Fig. 4 I and J).
To examine the effect of hiPSC-NSs on structural changes in

pain afferents entering the dorsal horn of the spinal cord above
and below the injured spinal segments, we investigated the dis-
tribution of calcitonin gene-related peptide (CGRP+) fibers,
which are involved in peripheral and spinal pain mechanisms (6,
24, 25). We quantified the areas of CGRP+

fibers in lamina III, 4
mm rostral and 4 mm caudal to the lesion epicenter. There were
no significant differences in the areas of CGRP+ fibers in lamina
III between the hiPSC-NS and control groups (Fig. S2 A–C).

Transplanted hiPSC-NSs Promoted Motor Functional and Electro-
physiological Recovery After SCI. We evaluated the motor func-
tional recovery by BMS score, Rotarod test, and the DigiGait
system. The BMS score showed significantly better functional
recovery in the hiPSC-NS than the control group 21 d after SCI
and thereafter (Fig. 5A). In the Rotarod test, the hiPSC-NS
group showed a significantly longer running time than the con-
trol group 56 d post-SCI (Fig. 5B). The DigiGait system meas-
ures the treadmill gait, as an objective evaluation of motor func-
tion (26, 27). Whereas all of the hiPSC-NS–grafted mice (n =
18) could walk on the treadmill at 8 cm/s, a subset of the control
mice (4 out of 16) could not maintain this speed. The profile of
stride length at 8 cm/s clearly demonstrated a significantly better
recovery of motor function in the hiPSC-NS–grafted mice com-
pared with the 12 control mice that could walk at this speed
(Fig. 5C).
Motor-evoked potential (MEP) was used to measure the

functional recovery in all of the mice electrophysiologically. The
latency of the motor-evoked potential was also measured, from
the onset of stimulus to the first response of each wave. At 112 d
after SCI, waves were detected in most of the hiPSC-NS group
(14 of 17 mice), but none were detected in the control group (0
of 15 mice) (Fig. 5D). The average signal-to-response latency in
the hiPSC-NS group was 4.6 ± 0.1 ms. Consistent with the
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electrophysiology results, α-CaM kinase 2+ descending motor
axons were observed to persist in the lesion epicenter in the
hiPSC-NS group (Fig. S3).

Long-Term Observation Revealed No Tumor Formation After hiPSC-NS
Transplantation. To investigate the long-term safety of the grafted
hiPSC-NSs, we extended the follow-up period to 112 d after SCI.
Motor functional recovery was maintained in the hiPSC-NS
group for the entire period (Fig. 6A), the hiPSC-NS–grafted
mice showed no tumor formation (Fig. 6B), and the grafted
cells exhibited normal neural differentiation (Fig. 6C). We
determined the proportion of Venus+ grafted cells that were
immunopositive for each cell-type–specific marker 112 d after
SCI. The grafted hiPSC-NSs had differentiated into NeuN+

(40.2 ± 2.8%), βIII tubulin+ (50.7 ± 2.0%), GFAP+ (18.1 ±
2.2%), APC+ (8.9 ± 1.6%), and Nestin+ (7.5 ± 1.0%) cells. For
comparison, at 56 d after SCI, the grafted cells had differentiated

into NeuN+ (22.9 ± 1.0%), βIII tubulin+ (49.1 ± 2.0%), GFAP+

(17.0 ± 1.2%), APC+ (3.0 ± 0.4%), and Nestin+ (10.7 ± 2.2%)
cells (Fig. 6D). Notably, significantly higher percentages of
NeuN+ mature neurons and APC+ oligodendrocytes were
present at 112 d than at 56 d after SCI, whereas the percentage
of graft-derived human Nestin+ NS/PCs slightly decreased. We
also examined the amount of proliferation among the grafted
cells by Ki-67 labeling. The percentage of Ki-67

+/HNu+ cells was
significantly decreased between 56 d post-SCI (1.1 ± 0.2%) and
112 d post-SCI (0.7 ± 0.1%). The Ki-67

+/HNu+ cells were dis-
persed throughout the graft area without evidence of clustering
at particular sites.

Discussion
In the present study, we used clone 201B7 of hiPSC-derived
neurospheres as a cell source to treat SCI in adult NOD-SCID
mice. We demonstrated that the hiPSC-NSs differentiated into
neurons, astrocytes, and oligodendrocytes in the injured spinal
cord and promoted motor functional recovery. Hypothetically,
the transplantation of hiPSC-NSs could result in a wide range of
positive effects, including angiogenesis, axonal regeneration, and
local-circuitry reconstruction, which have been reported in pre-
vious studies using rodent ESCs or iPSCs for SCI treatment (12,
18). All these mechanisms could contribute to motor functional
recovery after hiPSC-NS transplantation for SCI.
Angiogenesis after SCI promotes endogenous repair and

supports axonal outgrowth (28, 29). Here we observed that the
transplantation of hiPSC-NSs enhanced angiogenesis and tissue
sparing after SCI. Astrocytes express angiogenic growth factors
such as VEGF under hypoxic conditions (12, 30, 31), and we
observed that the hiPSC-derived astrocytes and host astrocytes
expressed VEGF, suggesting that the transplantation of hiPSC-
NSs promoted VEGF expression in both host- and graft-
derived astrocytes.
Motor functional recovery was also supported by the axonal

regrowth that was promoted by the transplanted hiPSC-NSs. Our
immunohistochemical analyses revealed grafted hiPSC-derived
GFAP+ astrocytes closely associated with NF-H+ and 5HT+

fibers. Graft-derived astrocytes are reported to promote the
regrowth of NF-H+ and 5HT+

fibers by offering a growth-per-
missive substrate (12, 18, 32). Furthermore, neurotrophic factors
such as NGF, BDNF, and HGF play critical roles in axonal
growth and in the survival of existing neurons (33–38). Consis-
tent with these reports, we observed that hiPSC-NS trans-
plantation promoted axonal regrowth at the distal spinal cord.
Because our treatment induced axonal regrowth, we also exam-
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jection (gray bars) into the spinal cord. Values are means ± SEM (n = 3, each).
*P < 0.05, **P < 0.01. (Scale bars, 100 μm in A; 50 μm in C, E, and H-1; 20 μm
in G-1, H-2, and H-3; and 10 μm in G-2.)
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Fig. 5. Transplanted hiPSC-NSs promoted motor functional and electro-
physiological recovery after SCI. (A) Motor function in the hindlimbs was
assessed weekly by the BMS score for 56 d. Values are means ± SEM. (B)
Rotarod test 56 d after SCI. Graph shows the total run time. Values are
means ± SEM. (C) Treadmill gait analysis using the DigiGait system 56 d after
SCI. Graph shows stride length. Values are means ± SEM. (D) Electrophysi-
ological analysis performed 112 d after SCI. MEP waves were detected in
most of the hiPSC-NS group (14 out of 17), whereas they were not detected
in the control group (0 out of 15). **P < 0.01. Behavioral analyses were
assessed by two observers who were blind to the treatment.
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ined the pain afferents entering lamina III of the spinal cord,
which is closely associated with NS/PC-transplantation–induced
allodynia (6). Our analysis revealed no significant differences
between the hiPSC-NS and control groups. Thus, although
allodynia was not assessed, our morphological data suggested
that hiPSC-NS transplantation did not induce abnormal in-
nervation by pain afferents, in contrast to a previous study in
which NS/PCs derived from adult rat spinal cord were trans-
planted into a rat SCI model (6).
The motor functional recovery observed in this study may also

be due to the formation of synapses between hiPSC-derived
neurons and host mouse spinal cord neurons. Our present data
support the potential for grafted hiPSC-NSs to form synapses
with host neurons in the injured spinal cord. Previous studies
have shown post-SCI functional improvements associated with
intraspinal grafts containing neuronal progenitors either alone or
in combination with other cells or interventions (4, 7, 39–43).
Such studies also report that graft-derived human neurons can
receive projections from host mouse neurons and that their ex-
tended processes make synapses with host neurons (39). It is
likely that local neurons in the lesioned area (a mixture of pre-
served host neurons and graft-derived neurons) transmit signals
by relay.
We observed that most of the hiPSC-derived mature neurons

were GABAergic, a neurotransmitter type that plays important
roles in the spinal cord by controlling the levels of motoneuronal
output and sensory input, by modulating primary afferent
transmitter release, and by direct postsynaptic inhibition of
motoneurons (44, 45). Furthermore, hypofunctioning spinal
GABAergic inhibition is involved in pathological pain states that
develop due to SCI (46). Thus, synapse formation by donor-
derived GABAergic neurons might be important for motor co-
ordination within the spinal neuronal network and for the sup-
pression of SCI-induced spasticity (8, 47) and pain (46).
The greatest potential drawback of hiPSC-based therapies is

their potential for tumorigenicity. Therefore, we observed the
treated animals for an extended period. Not only was functional
recovery maintained in the hiPSC-NS group for 112 d after SCI,
but no tumor formation occurred at all. Quantitative analysis of
the phenotype of the grafted hiPSC-NSs revealed an increase in
the percentages of NeuN+ mature neurons and APC+ oligo-
dendrocytes at 112 d compared with 56 d after SCI, showing that
most of the grafted hiPSC-NSs successfully differentiated into
mature neural cells over time. Some Nestin+/HNu+ cells and Ki-
67+/HNu+ cells were still present at 112 d post-SCI, although
their proportions were lower than at 56 d after SCI, indicating

that some grafted cells remained as NS/PCs. However, no evi-
dence of excessive proliferation, clusters of proliferating cells, or
other signs of tumor formation were observed in any of the
transplant-receiving mice. Collectively, the lack of tumors, in-
crease in NeuN numbers over time, and low Nestin and Ki-67
numbers support the possibility that this approach will be safe
in humans.
Consistent with our findings, previous studies using human

fetal NS/PCs showed some Nestin+/HNu+ cells that were neg-
ative for the proliferative markers Ki-67 and proliferating cell
nuclear antigen in the striatum of NOD-SCID mice, 6 mo after
transplantation (48), 28–34% Nestin+/HNu+, and 2–4% Ki-67

+/
HNu+ cells were in the spinal cord of NOD-SCID mice 4 mo
after transplantation (5), and 11–14% Nestin+/HNu+ and 3–5%
Ki-67

+/HNu+ cells were in the spinal cord of nude rats 6 mo
after transplantation (49). Notably, no tumor formation was
observed in any of these studies, despite the presence of Nestin+-
and Ki-67

+
–grafted cells, even after long-term observation.

Recently, clinical trials of human stem-cell–based therapy for
SCI have been launched, using human NS/PCs (4, 5) or human
ESC-derived OPCs (15). In this paradigm, OPC-mediated res-
toration of myelination and trophic effects are the most likely
mechanisms for the resulting benefits. Besides overcoming con-
cerns about immune responses and the ethics of using human
ESCs (hESCs), our present study suggests that grafted hiPSC-
NSs might be more beneficial than hESCs, because the hiPSC-
NSs gave rise to GABAergic neurons, which can help to suppress
SCI-induced spasticity and pain (8, 46, 47). In addition, we found
that hiPSC-NSs differentiated into astrocytes and oligoden-
drocytes, which can exert positive effects through both cell-au-
tonomous and noncell-autonomous (trophic) mechanisms.
Nevertheless, our present results are only a first step toward
clinical applications. In our future studies, the safety and effec-
tiveness of hiPSC-derived NS/PCs will be more intensively in-
vestigated, for example, using nonhuman primate SCI models (8).
In particular, hiPSCs established by delivering the reprogramming
factors using a different method, such as an integration-free virus
system (50), or a virus-free (51) or transgene-free system (52–54),
or by using (HLA)-homozygous donor-derived cells (55), should
be evaluated.

Materials and Methods
Cell Culture, Neural Induction, and Lentivirus Transduction. The cell culture and
neural induction of hiPSCs (201B7) were performed as described previously
(11, 18, 56) with slight modifications.

Lentivirus was prepared and transduced into neurospheres as described
previously (11). Briefly, hiPSC-derived primary neurospheres were dissociated
and infected with lentivirus expressing Venus fluorescent protein under
control of the EF promoter (pCSII-EF–Venus). These primary neurospheres
were passaged into secondary and tertiary neurospheres and used for
transplantation.

Spinal Cord Injury Model and Transplantation. Adult female NOD-SCID mice
(20–22 g) were anesthetized via an i.p. injection of ketamine (100 mg/kg)
and xylazine (10 mg/kg). Contusive SCI was induced at the Th10 level using
an IH impactor (60 kdyn; Precision Systems and Instrumentation), as de-
scribed previously (57).

Nine days after the injury, 5 × 105 hiPSC-NSs were transplanted into the
lesion epicenter of each mouse (n = 31) using a glass micropipette and ste-
reotaxic injector (KDS310; Muromachi-Kikai). An equal volume of PBS was
injected instead into control mice (n = 29).

Behavioral and Histological Analyses. Behavioral analyses were evaluated
using the BMS, Rotarod apparatus (Muromachi Kikai), and the DigiGait
system (Mouse Specifics) (detailed protocols are described in SI Materials and
Methods). For histological analyses, mice were deeply anesthetized and in-
tracardially perfused with 4% paraformaldehyde (PFA; pH 7.4). The dis-
sected spinal cords were then sectioned into axial/sagittal sections using
a cryostat (detailed conditions are in SI Materials and Methods). All behav-
ioral and histological analyses were conducted by observers blind to the
treatment. All animal experiments were approved by the ethics committee
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Fig. 6. Long-term observation revealed no tumor formation after hiPSC-NS
transplantation. (A) For 112 d, motor function in the hindlimbs was assessed
weekly by the BMS score. Values are means ± SEM. (B) Representative H&E
image of hiPSC-NS–grafted mice. (C) Boxed area in B. (C-1–C-3) Immuno-
histochemistry showing normal neural differentiation of the grafted cells.
(D) Percentages of cell-type–specific marker-positive cells among the Venus+

human cells 56 and 112 d after SCI. Values are means ± SEM (n = 4 and 5,
respectively). **P < 0.01. (Scale bars, 500 μm in B; and 50 μm in C.)
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of Keio University and were in accordance with the Guide for the Care and
Use of Laboratory Animals (National Institutes of Health, Bethesda, MD).
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